
AD-A193 644 TERM REWRITING: SOME EXPERIMENTAL RESULTS(U) NORTH 1/1
CAROLINA UNIV AT CHAPEL HILL DEPT OF COMPUTER SCIENCE
R POTTER ET AL. OCT 97 TR97-034 N9US14-96-K-0690

UNCLASSIFIED F/G 12/2 NL

IIIflIIIIIIIff
Ellllllllllll
lllllllll



1j.2

liu Ia 
1 .

111I25111.4 ml.

MICROCOPY RESOLUTION TEST CHArf



(aD

Term Rewriting: Some Experimental Results

U TR87-034

October, 1987

Richard Potter and David Plaisted

The University of North Carolina at Chapel Hill \
Department of Computer Science
Sitterson H1II, 083A
Chapel Hill. NC 27599-3175

DTIC

DJhIMUON STATDIT A19 8
Approved for public rele0aa.;

Dintributlon UnlnIlteed H

88 4 'r O96

.'p. '.,,, . ' ,, 'r ' ' ' #,', 'M~' '. " UV r' ?,' UJ °' ' "."¢ - "- - -,", % , ".' ,"' '"



1z

Term Rewriting: Some Experimental Results

Richard C. Potter

David A. Plaisted

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27514

Aburad. We discuss term rewriting in conjunction with sprfa, a Prolog-based theorem prover.

Two techniques for theorem proving that utilize term rewriting are presented. We demonstrate their effec-

tiveness by exhibiting the results of our experiments in proving some theorems of von Neumann.Bernays-

Godel set theory. Some outstanding problems associated with term rewriting are also addressed.

This research was supported in part by the National Science Foundation under grant DCR-8516243 and by

the Office of Naval Research under grant N00014-86-K-0680.



1. Introduction

Term rewriting is one of the more powerful techniques that can be employed in mechanical theorem

proving. Term rewriting allows us to prove fairly sophisticated theorems that are beyond the ability of

most resolution-based theorem provers. Unlike resolution, term rewriting seems to duplicate a rule of

inference that humans use in constructing proofs. In this paper, we will describe our research and results in

proving theorems via term rewriting. The body of theorems we prove are set theoretic; the axiomatization

of set theory employed is derived from the work of von Neumann, Bernays, and Gd del. For a list of these

axioms, see [2]. The advantage of the von Neumann-Bernays- Godel formalization is that it allows us to

express set theory in first-order logic. This in turn implies that a first-order theorem prover can be used to

derive set theoretic theorems. On the other hand, this formalization has a significant disadvantage in that it

is very clumsy for humans to use. Second order logic is a much cleaner means for expressing the axioms

of set theory.

We begin by introducing sprfn, the Prolog-based theorem prover we used in our research; we

emphasize the formal deduction system underlying the prover. In the second section we describe the term

rewriting mechanism built into sprfn. In the third and fourth sections we describe two theorem proving

techniques utilizing term rewriting and the results of these approaches when employed in connection with

sprfn. In each of these two sections we give examples of sample theorems that we were able to derive.

We conclude by summarizing our results and addressing some problems that face term rewriting in general

as well as some problems specific to term rewriting with sprfn.

2 I
.,'€ ' '., ! , '€ ' . ,- , : ':' . " - I.



2. SPRFN and the Simplified Problem Reduction Format

The theorem prover we used - sprfn -- is based on a natural deduction system in first order logic

which is described in [1]. However, before we present this formal system, we would like to motivate it by

describing the format on which it is based; namely, the problem reduction format. The formal deduction

system implemented by sprfn is a refinement of the problem reduction format. Both of them embody the

same goal-subgoal structure, as can be seen from what follows. The following description omits many

details. For a complete discussion of the problem reduction format, see [5].

The structure of the problem reduction format is as follows. One begins with a conclusion G to be

established and a collection of assertions presumed to be true. Assertions are of the form

C:-i 1,A 2 .... A. (implication) or P (premises) where Ai, P and C are literals or negations of literals.

The implication assertion is understood to mean A 1&A2 .. &A-+C. The Ai's are antecedent statements,

or simply antecedents, and C is the consequent of the implication. We call the conclusion G the top-goal.

The process of attempting to confirm the conclusion begins with a search of the premises to see if one

premise matches (is identical with or can be made identical by unification with) the goal G. If a premise

P. matches G then the conclusion is confirmed by P,. Otherwise, the set of implications whose conse-

quents match G is found. If the antecedent of one implication can be confirmed then one has confirmed the

consequent, and hence G, which the consequent matches. Otherwise we consider the antecedents as new

subgoals to be confirmed, one implication at a time. These goals are called subgoals because none of them

is the primary goal. The process of confirming these subgoals involves repeating the method just described

in connection with the top-goal.

The natural deduction system underlying sprfn -- the modified problem reduction format -- is based

on the problem reduction format just described, although refinements are added for the sake of complete- t on For

ness of the deduction system. We do not have room to describe these refinements. The following oescnp- r, R]

tion of the modified problem reduction format omits many details. For a complete discussion, se[4], ncod
,ation

A clause is a disjunction of literals. A Horn-like clause, converted from a clause, is of the form
At Ion/

L :-L, L 2,..., L where L and the Li's are literals. L is called the head literal. The Li's constitute the tbIlty Codem

fAvail and /or
3 01st Speolal

INSPECTED

_"P.



clause body. A clause is converted to a Horn-like clause as follows. For a given clause containing at least

one positive literal, one of its positive literals is chosen as the head literal and all other literals are put in the

clause body negated. For an all-negative clause, we use false as the head literal and form the body from

positive literals corresponding to the original literals.

Now assume S is a set of Horn-like clauses. A set of inference rules, derived from S, is obtained as

follows. For each clause L :-L 1 L 2 , . L. in S, we have the following clause rule:

Clause Rules

r0 -+L I => r, -+L , r, -+L 2=> r2-+L 2,- .  r.- -+L. => r. -+.L
U0-.*L => r'--+L

We also have assumption axioms and a case analysis (splitting) rule. Let L be a positive literal.

Then the assumption axioms and case analysis rule can be stated as follows:

Assumption Axioms

Cue Analysis (spitting) Rule

ro-+L => r, )M-+L, r1,M -+L => r, M -+L
r0o-+L => l+

The goal-subgoal structure of this deduction system is evident. The input clause L :-L 1, L 2 . L

merely sumts that L IL 2* L have to be confirmed in order to confirm L. The corresponding clause

rule for L :- L 1.L2. .L, sumsthat,if the initial subgoal is r-L,then makeL1 . L, subgoals in suc-

cession, add to r maccesaively the literals tdo we needed to make each one provable;, and finally, return

r. --.L whi e r. contains all the literals needed to make L 1,... L. provable.

S"rf unplements the natural deduction system just described. Sprtu exploits Prolog style depth-

first aferauive-deepening search. This search straegy involves repeatedly performing exhaustive depth-first

search with increasing depth Wids. For a description of the strategy, see 16]. This search strategy is

4

IN 1 Z'p6



complete and can be efficiently implemented in Prolog, taking advantage of Prolog's built-in depth-first

search with backtracking.

3. SPRFN and Term Rewriting

3.1. Input Format

The input to sprfn is formatted in Horn-like clauses. Given a set S of clauses, we convert them into

Horn-like clauses as follows. For a clause containing at least one positive literal, we select one such literal

to be the head, negate the remaining literals, and move them to the body of the clause. For an all-negative

clause, we use false as the head of the clause and form the body from the positive literals corresponding to

the original literals. The following example shows how to translate from clause form into the format

accepted by sprfn. Notice the similarity of the input format syntax to Prolog program syntax.

Clause Form

P(x) V Q(x)

-P (x) V R (x)

-Q (x) V R (x)

-R (a)

Input Format for sprfn

p(X) :- not (q (X))

r(X) :-p(X)

r(X) :- q (X)

false :-r (a)

S



For input to sprfh, the convention is that a name starting with a capital letter is a variable name; all

other names are predicate names, function names or constants. Not and false are reserved for negation and

for the head of the top-level goal, respectively.

3.2. The Method of Proof

The prover attempts to prove that false is derivable from the input clauses. For example, given the

following set of clauses:

p(X) :- not(q(X))

r(X):-p(X)

r(X) :-q(X)

false :-r(a)

sprfn will derive the following proof:

false :- cases(
(not q(a): (r(a) :- (p(a) :- not q(a)))),

(q(a): (r(a) :- q(a)))
)

Thus,false can be proven from the input clauses. For there are two cases to consider. (1) Suppose not q(a)

is true; then we can derivefalse as follows. Since we are given that false :- r(a), we make r(a) our subgoal.

Now we can derive r(a) if we can prove p(a), since we are given r(X) :- p(X). Meanwhile, we can derive

p(a) if we can prove not q(a), since we are given p(X) :- not q(X). However, we are assuming not q(a), so

this subgoal can be proven. (2) Suppose q(a) is true; then we can derivefalse as follows. Once again, we

make r(a) our subgoal, since we are given that false :- r(a). Now we can derive r(a) if we can prove q(a),

since we are given r(X) :- q(X). But we are assuming q(a), so this subgoal can be proven.

6



3.3. The Term Rewriting Mechanism in SPRFN

Replace. An assertion of the form replace(<exprl>, <expr2>) in the input signifies that all subgoals

of form cexprl> should be replaced by subgoals of the form <expr2> before attempting to solve them.

This is like a rewrite applied at the 'top level'. This is sound if .cexprl> :- ,expr2> is valid.

Rewrite. An assertion of the form rewrite(<exprb, <expr2>). in the input signifies that all subex-

pressions of form cexprl> should be replaced by subexpressions of the form cexpr2>. This is like a

rewrite applied anywhere, not just at the top level. This is sound if the logical equivalence cexprl> <->

<expr2> is valid, or, in case when the expressions are terms, if the equation cexprl> = cexpr2> is valid.

In our experiments, we translated the axioms of von Neumann-Bernays-Godel set theory into a list

of rewrite rules and then attempted to derive various theorems based on these rules. For example, consider

the axiom for Subset below:

(Vx,y)[x y 4(Vu )[(u e x -+ Uey)]]

This would be translated into the following two rewrite rules, which would be given as input to the prover.

rewrite(sub(X,Y), or(not(el(fl7(X,Y),X)), el(fl7(XY),Y))).
rewrite(not(sub(X,Y)), and(el(UX), not(el(U,Y)))).

Several points deserve mention. First of all, note that the single axiom gives rise to two rewrite rules

-- a "positive" as well as a "negative" rule. This is to preserve soundness, since sprfn performs outermost

term rewriting. The presence of the negative rewrite rule insures that whenever sprfn rewrites a term of

the form sub(X,Y) with or(not(el(f17(XY),X)), eI(fl7(X,Y),Y))) (which implies that sprnf is using the posi-

tive rule) we know that this term does not appear in a negative context; for if it did, the prover would

already have rewritten it using the negative rule.

7



We should also point out what may seem at first to be a counter-intuitive feature of these rewrite

rules. Note the presence of the skolem function fl7(X,Y) in the positive rewrite rule and the unbound vari-

able U in the negative rule. One might think that the situation should be reversed. However, the correct-

ness of this procedure can be seen by reflecting upon the following. Recall that sprfn performs subgoaling

in attempting to prove false. Thus if the prover is attempting to prove A, let's say, and it tries to do this by

trying to prove the subgoal B, this procedure will only be sound if it is the case that B - A. Our rewrite

rules must observe this fact. Hence, if we are trying to prove A and we attempt to do so by rewriting A

with B and then trying to prove the subgoal B, it must be the case thut B -- A. Or, to put the matter in Pro-

log symbolism, it must be the case that A :- B. When we skolemize the original axiom, we see that the fol-

lowing are logical consequences of the skolemized input clauses:

sub(X,Y) :- or(not(el(f17(X,Y),X)), el(f17(X,Y),Y))

not(sub(XY)) :- and(el(UX), not(el(UY)))

Thus, we must express our two rewrite rules as given above.

For further details concerning the term rewriting facility, the reader should consult Appendix A.

4. Term Rewriting with a Tautology Checker

In our first experiment, we modified sprfn to make use of a tautology checker. Suppose that we

wish to prove the set theoretic theorem T, which, in accordance with the procedure outline above, has been

converted into the top-level goal: "false :- X".

If the flag t_test is set, then the prover will call the tautology checker tautology3(XY), where X is

the input theorem (derived from the top-level goal "false :- X") and Y is the output consisting of the non-

tautologous part (if any) of X. If X is a tautology, then the prover will halt; else, the original goal: "false

X" is retracted and replaced in the database with the new goal: "false :- Y". The prover then proceeds to

8



attempt to prove "false" by means of the subgoaling method described above. This method seems to work

quite well. For one thing, if "X" is a tautology, the tautology checker allows the prover to spot this fact

much sooner than if it had attempted to achieve its top-level goal by means of its subgoaling mechanism

alone. For another, we have found that when "X" is not a tautology, by removing the tautologous portion

of X and returning "Y" as the subgoal to be proved, we save the prover considerable time and avoid need-

lessly duplicated effort.

Note: tautology3(X,Y) does not unify variables (thus it only eliminates a disjunction as a tautology if

some literal L appears both negated and un-negated in the clause).

As a standard practice, we have included the axiom: "or(X.Y) :- prolog(tautology(or(X,Y)))" to han-

dle cases where unifying is necessary to eliminate tautologous clauses. This allows us to invoke Prolog

from within sprfn, and to call the Prolog predicate tautology/I which succeeds if its input can be converted

into a tautology via unification.

Thus backtracking over the elimination of a tautologous clause is still possible, but it only occurs

with respect to the "or" rewrite rule. This seems more efficient than permitting backtracking into the tau-

tology3 routine itself (which would be required if we allowed unification within tautology3).

For further details concerning the tautology checker, the reader is referred to Appendix B.

We now exhibit two examples of the prover at work, utilizing the tautology checker.

4.1. Example 1

In this first example, we show how the tautology checker returns the non-tautologous portion of its

input theorem, which is then proven by sprfn's subgoaling mechanism.

Proof of Difference and Join Theorem

Our top-level goal is:

fase:-eq(diff(ab)join(a.comp(b)))

9



After reading in the input clauses, which contain our set theoretic rewrite rules as well as a few axioms, the

prover begins by calling our tautology checker:

ttest is asserted
bjmly is maed
soltion,-siimult(O.l) is mssned
pfosize_muh(O.4) is asseted

calinIm5a iogy3(eq(diff(ab)jon a,omp(b))),9 812))

after removing the tautologous portion of the theorem, tautology3 returns the following:

conjunct:
m(fl7(diff(a.b),comp(b)))
not el(f17(diff(sab).cornp(b)),s)
el(fl7(diff(a.b),cnp(b)).b)

Continue?: yes.

at this point, the tautology checker informs the user that it has a conjunction of disjunctions (in this case

there is only one such disjunction) left, which it could not eliminate via tautology checking alone. It asks

the user if he wishes to proceed, and in this case, we answer in the affirmative. The prover's subgoaling

procedure is now invoked, and in a short time sprfn returns with the following:

proof found
false.ses(

(not eI(fl7(diff(a.b),-up(b)),a):
(omr((f17(diff(a,b),cop(b))).ou(not d(fl7(diff(ab).canp(b)),s),
el(f17(diff(a.b).cnp(b)),b))):-(or(nxtel(fl7(diff(a.b).cownp(b)).,).
et(fl7(diff(,b).comp(b)).b)):-t el(f17(diff(ab).cmp(b))a))))

(eJ(fl7(diff(a.b).ccrmp(b)),a):(or(m(fl 7(diff(a,b).-~p~b))).orno¢ el(fl7(diff(a,b),ornp~b)),a), "

el(fl7(diff(ab).comp(b)),b))):-(m(fl7(diff(ab).mnp(b)):-
eI(f17(diff(ab).,omp(b)),a)))))

size of proof 7

8.73 cpu seconds used
5 inferences done

It is worth pointing out that by using the term rewriting facility without invoking the tautology

checker, the prover was able to derive the theorem in 128.43 cpu seconds with 34 inferences. We

10

Vr- VV

r jV *y'~E,~V.&~~ .,~. A~'V*,% S. % ~V,%' .'. ~%.* '' - U



attempted to prove the theorem using neither the tautology checker nor rewrite rules; but after letting the

prover run for over two hours without finding the proof, we put it out of its misery.

4.2. Example 2

In this second example, we show the prover's term rewriting facility in action. In this particular

case, the tautology checker is able to establish that the entire input theorem is a tautology; hence it is

unnecessary to invoke sprfn's subgoaling mechanism, since the theorem is already proven.

Proof of Power Set Theorem

Our top-level goal is:

falae:-eq(psc(join(a~b))jomn(pset(a).pset(b)))

After reading in the input clauses, which contain our set theoretic rewrite rules as well as a few axioms, the

prover begins by calling our tautology checker.

b yis asserted

solutiop size mulz(O. 1) is asserted
pmoLsize~mut(O.4) is asserted

cal ng(tautology3(eq(pset(join(a~b))join(psei(a).pset(b)))_981 8))

The rewriting mechanism displays the results of its outermost term rewriting operation:

-wieq(piai(ab))jot()seI),(b)))and(sub(p(oin(a.b)), T
join(pse(a),psetrb))),sub(oin(pst()se(b))peloin(a.b)))))

ewirite(sub(pset(join(a~b))join(pet()pse(b)))an(sub(petomn(a.b)).
psct( a)).sub(pset(join(a,b)).psci(b))))

ewirite(sub~psct(join(a~b)).pset(a))or(n41 el(fl 7(pset(join(ab))plet(a)).

etonot eIbf7)pser~fo7(apb)).ps(ab)),pset(ajomn-(a)))nisbf1(st
rewrite(not su(f7(pst(join(a,b)),pse(a))jr~oin(ab))r. sub(f17(pset(

join(a,b)),pset(a)),a).not sub(fl7(psetooin(ab)).p-eta)),b)))

mrite(el~ff17(pwet(oin(a~b)).pse(a)).pse(a)),sub(fI 7(pset(iu(&,b),
pset(a)),a))



mwrile(no elff 17(pse(jin(ab))pe*bDpet(join(ab)D)no( suW~17(pset(
join(a~b))4mue(b))Join(&.b)))

nwmie(not sub(fl7(pseona,b)).pset*))jomn(ab)).osb(f7psWt
join(a-b))4psc(b))a),not subf17qsa~join(ab))p=e(b)).b)))

ritzeJ(f17(p-e(jin(a~b)),peea)).psei)).subf17(pia(jin(a~b)).
pgeO)),b))

tcwrit*sb(a).n~,set.b)).oit~j(a,b))).of(ne(f7on(pse*a).

pset~oin(a~b))),pse(joi.ab)))))

rewfite(not d(f17(jon(pseaa)psca(b)).pwe(oin(asb)))join(st).s2o)))
-(not el(fl7(jois()a(b))pioin(ab)))p())noel(fl7(

join(pgcza),psca*)).pe(join(ab))).put&)))

mrine(nol eI(f17(join(psta).scl(b)).sctoin(ab)))psto))notsubf7(

tewfimelnt(f7(join(pe(),peo))pt(oin(.b))).pseoi(b))osbf17(
jOin~psa).Pcez*)).psea~oin(ab)))job~)))

-ftWnhmtb(fl7(jinp-gIa),pe(b))p-e1(oin(a.b)))join(a,b))And(sub(f17(
jon(PSeWA).).ps .TPsetjOinA.b))).a).suWIf7(join(pe(a)pe(b)).

At this point, rewriting has been completed; the procedure cut expand is now invoked to expand the

rewritten theorem into conjunctive normal form and to then eliminate all tautologous conjuncts.

call(O.-fcxpnd(d(and(of(of(iml sub(f 17 int(jo(ab)).pet&)),A),no sub(

sub(f1 7(pse(join(a.b)).pxa(b)).a).not subfl7(pset(join(ab))4sec()).b)),sub(

join(a.b))).a).na subf17(oOnWPseta).sez*)).psed(oin(ab))),b)).an(sub(fl7

join(&.b))).b)))).j 5815))

Initially, when cut expand is called, its output argument is the uninstantiated Prolog variable 15815. But

when it returns, this output argument has been instantiated to the empty list, signifying that no non-

tautologous portion of the theorem remains:

LStO.deXi'md(Md(and(ot(or(n sub(fl7 (jom(ab)),pMct&)).a)nog sb(

Wu~17,s=a(join(a~b)).p(b)),&)no sub(f17(pc(&~.b))OpcO)).b)).sub(
fl 7(pse(Oin(asb)),psca*)).b))),or(or(not xub(f17(ioin(ps*&~).pWc(b)),pWc(
join(a-b))).A).no sti,(fl7O(jonPset2).pez)),PseMoin(sab))).b)),an(mub(f 17
(joinp(a)aTps)4a~in(ab)))).sub(f7(jo(Met)e))ps*a

12I



join(a.b))),b)))).U ))

tautology3 retums: istaatoogy

tbe _mij.a_tautology

4.28 qcu weoods used
0 infenences done

We observed two very important things while running these tests. First of all, we found that includ-

ing explicit rewrite rules to distribute "or" over "and" significantly slowed down the tautology checker.

(Fortunately, the cnf.expand routine is able to test for tautologies without requiring that its input argument

be in conjunctive normal form; hence employing the distribution rules is not needed.) We ran tests in

which these distribution rules were used and tests in which they were not. The results are contained in

Appendix D.

Secondly, we discovered that the depth to which term rewriting is allowed to take place greatly

affects overall performance. For example, in the case of the Power Set theorem exhibited above, we did

not include in our input the rewrite rules for the Subset axiom. By omitting those two rules (see the earlier

section: "The Term Rewriting Mechanism in SPRFN") we cause the prover to regard terms of the form

"sub(X,Y)" as atomic and thus it does not rewrite them. In this way, it is able to discover that the entire

theorem is a tautology. On the other hand, we found that if we included the rewrite rules for the Subset

axiom, then our tautology checker was no longer able to eliminate the entire theorem as a tautology;

indeed, it returned a significantly long conjunction, which the subgoaling mechanism then had to prove.

This took a much greater amount of time. (Cf. Table 2.)

For a complete summary of our test results using the tautology checker, the reader should consult

Appendix D. A complete listing of all the rewrite rules we used in our experiments can be found in Appen-

dix C.

S. Term Rewriting with a Preprocessor

In our second experiment, we used our term rewriting facility as a preprocessor. We discovered in

our earlier experiments that, as a general rule, the more complex the theorem, the greater the number of

13

MZ



ri

terms that ultimately result from rewriting the theorem. In fact, we found that for certain theorems, such as

the Composition of Homomorphisms theorem (see below) it was physically impossible to use the tautology

checker. This was due to the fact that one term was being rewritten to a conjunction (or disjunction) of

several other terms, each of which was itself subject to being rewritten into a complex of several terms and

so on. Thus, nearly exponential growth of the Prolog structure occurred during the operation of the rewrit-

ing facility. This eventually caused Prolog to run out of stack long before the cnf expand subroutine had a

chance to eliminate any tautologous portion of the theorem.

We decided, therefore, to preprocess the theorem by reducing the size of the term that appeared as

the body in the top-level goal. In general, our approach involved skolemizing the negated theorem and

then using the rewriting facility to produce the initial set of input clauses. As an illustration of this tech-

nique, we present the following proof of the Composition of Homomorphisms theorem. We should point

out that it was necessary to add three simple axioms in order to derive the proof; also, it was necessary

once again to restrain the depth to which rewriting took place.

Proof of Composition of Homomorphisms Theorem

Our theorem is the following:

(Vxh. xh 2,=l ,x2r 3,_t" le2,x3)[(hom(xh~w 1=sl~fl~2,xi2
no [n ,XS ,X!r ,X .4')) --4hom [compose (xh2,xh l),u l'1x34f3)]

After skolemizing the negation of the theorem we have three clauses to be rewritten:

hom(ahlasl af1,as2,af2), hom(ah2,as2,af2,as3,af3), and not(hon(compose(ah2,ahl),asl,aflas3,af3)).

Based on these clauses, the prover's term rewriting facility produced the following set of input clauses:

Clauses derived from hom(ah l,as l,aflas2,af2):

eq(apWpy(ah1,s~ply(afl,ord-paif(G!,G2))),
qpply(aZord..pir(apply(ahI,GI),apply(hl ,G2)))):-

el(Glasl), el(G2Azl).
maln( ~ahl a12).

14l



dosed(&X2,a2).
dowd(ASlIXf).

Clauses derived from hom(ah2,as2,af2,as3,af3):

eq(appiy(ahs2.pply(alZord-puir(G3.G4))).
apply(a13.ord..puirspply(ali.G3).Apply(ahs2,r04))))-

eI(G3xu2). cI(G4.As2).
nmM(&h2.As2.a3).
ctow(as3,a13).
closed(as2,a2).

Clauses derived from not(hom(compose(ah2,ahl),aslafl as3,af3)):

el(g5SI1)
el(gO6AS ).
false:-

eq(apy(ah2py(ahl.a ly(afl,ordpits46)))).
apy(af,-dAspWy(sh~sy(h 4))AP(h2pply(h46)))).

map(ccmpost(ah2,AhI).As .Ws),
ctosed(as3.Af).
closed(sl~Aft).

Note that our top-level goal has become:

false:-
eq~apply(ah2.Appty(ahl~appy(afl.or&.puirWgS46)))).

appy(&fl.-dpuiiapy(AZWly(h 4))Ap~y(aAp*(ahI 6)))),
maps(oownpow(al,2AhI).Asl,as3).
closcd(as3Af).
closed(ulAfl).

In addition to these input clauses, we added three axioms. The first two of these are trivial while the third,

although non-trivial, can be derived by the prover in 24.63 cpu seconds after 15 inferences.

Axioms for proof of homomorphism theorem:

eq(apyXF.5)A~pyOMF2.2)):

eq(S 1.53). eq(app~y(XFI.S3).Appy(XF2S2)).

ei(applyW(.X).S2) :- mnpg(XFAS52). eI(X.SI).

msapeoseMc~(.Y).S I.S3): - mq(Y.S IS2)xum.QS2,S3).



Finally, we added some extra rewrite rules which serve only to cut down on the size of data structures that

result from term rewriting.

Rewrite Rules to handle large terms:

Iewrite(Ml(ah IAs lafl.a2)1).
rwie(33(sh I Asi.&fiaAf2).S2).
rel32(&h2As2,af2.aAf),g3).

fvwrie(fl3(ah2AsZ&ad~sAf3).g4).
-ewme(f32(ccnpo-e(ah2.ahl)Asl~Afl~as3,af3)jS).
-ewme(f33(onmpose(ah2,.nsl Aas AA3af3)g6).

mwrite(vppy(ootnpo(XFIXF2).S)Appy(XFI ,AppyOXF2,5))).

Given this preprocessed input, sprfn is able to derive the following proof of the theorem:

-to found
false:- - ((eq(Wply(ah2Appy(ah1lpIwy(af1 .ofd.pair~sU56)))).

q~ply(af3,od-&pqply(h2APpy(ahl4gS)).
apply(&h2,Appy(&hIa6))))):-O)).

(qwpu(ompoue(s"2ah).AsIAs3):-
rn*Weahl~Asl~as2),
m%*&ha2.As,as3)),

closedWu3A.af
closed(as l.af 1).

size ofproof I&

30.2333 qpu seods used

14 infencoes done

Note that the proof involves a lemma, which Sprha derived in the course of its operation. If we so desire,

we can ask the prover to show us how it cam up with this lemma. When we do so, it responds with the

following derivation:

Poof Inm:
fslse:-(eq(&pply(a2,app I MOYlAplsfl -- dPas(56)))).

IMY(aS-fd-PsiqplY(h2sppY(hl4aS))-
qpy(sapply(ahI46))))):-

Ienun((eq(swply(shlisppy(afl.ord.pairzS546))).

(eq(appY(sh2,qPPIY(s12ord..Puar(qa~hl ,g5).ApIY(sh 1 -6)M)
qWp*(aflord-air(ply(ah2appy(ahI .g5)).
qWpl(ah2,sppy(&h 146))))):-

16



Im((el(apply(ah),as2): O)
(eI(apply(&hl46).a52):-

msp(ahI~as l.u2),el(g6,ul)))).

size ofproof 11

26.9166 cpu seconds used
13 infences done

6. Summary of Results and Some Outstanding Problems

The techniques we employed allowed us to prove moderately sophisticated set theoretic theorems in

rapid time with few inferences. These theorems would have been much more difficult to derive without the

rewrite rules; indeed, sprfn was unable to derive some of them when run without the rewrite rules.

Undoubtedly it would have been beyond the power of a typical resolution theorem prover to derive most of

the theorems in question.

We have found that removing the tautologous portion of a theorem by means of some filter such as

our tautology checker seems to speed up the derivation time, by allowing the prover to focus its attention

on the non-tautologous aspects of the theorem. Furthermore, we discovered that the depth to which term

rewriting is allowed greatly effects the prover's ability to arrive at a proof. Clearly, more work needs to be

done in this area. At the present time, human intervention is required to adjust term rewriting depth; hope-

fully this can be automated to some extent in the future.

Our research leads us to conclude that preprocessing input clauses by means of rewrite rules is also

highly effective in directing a theorem prover's attention towards a fast, relatively short proof. Although

this kind of preprocessing is presently being done by hand, we are confident that it can be fully automated.

Finally, among the practical results that we obtained, it bears mentioning that it pays to avoid distri-

buting "or" over "and" by means of rewrite rules.

17

%J



At the same time, we discovered that there are limits to the power of term rewriting in connection

with proving theorems from set theory. For one thing, we found that the sizes of clauses grows almost

exponentially when terms are rewritten by terms which are themselves subject to being rewritten, and so

forth. Although this problem has no affect on soundess, the physical limitations of the computer itself

come into play at this point, causing the prover to run out of stack before it can complete its rewriting

phase.

We also realize that our procedure is not complete, if rewriting takes place at the wrong time. For

example, suppose we have the rewrite rule: B ->> P(x) and we wish to demonstrate that the following

theorem is a tautology:

B V (-P (a) A -P (b))

If we rewrite B before we distribute "or" over "and", we have:

P (x) V (-P (a) A -P (b))

from which we can only derive:

(P(x) V -P(a)) A (P (x) V-P (b))

and this is not tautologous no matter how we instantiate the variable x. Yet if we distribute "or" over "and"

before rewriting B, we have:

(B V -P (a)) A (B V -P (b))

from which we can derive the tautology:

(P (x) V -P (a)) A (P (y) V -P (b))

since Prolog will provide a different variable each time it replaces B with P(x).



This raises the following questions: Is term replacement more complete than term rewriting? How

complete is term replacement for existentially quantified variables? Is replacement equivalent to delayed

term rewriting? More work needs to be done before we are in a position to answer these questions.

Finally, the approaches to term rewriting that we explored are not effective when trying to prove

theorems that require creative insight. For example, in one of our experiments we tried to deduce Cantor's

Theorem using our rewrite rules. However, we discovered that sprfn was unable to find the proof without

being given quite a bit of non-trivial information. Specifically, we had to provide it with axioms implying

(1) that any function induces its own diagonal set and (2) that the relation which pairs a unit set with its sin-

gle element is a one-one function. Once these axioms were supplied, by making use of our rewrite rules

the prover was able to derive Cantor's Theorem in 33.65 cpu seconds with 12 inferences. Nevertheless,

one would like the prover to be able to realize on its own that such sets and functions exist. Yet recogniz-

ing that there is such a thing as the diagonal of a function and that such a set might be useful in this case

requires a kind of insight that goes far beyond syntactic manipulations. Unfortunately, term rewriting alone

does not provide the necessary machinery for the prover to possess this kind of creative insight.

References

[1] Plaisted, D.A., 'A simplified problem reduction format', Artificial Intelligence 18 (1982) 227-261

[2] Boyer, Robert, Lusk, Ewing, McCune, William, Overbeek, Ross, Stickel, Mark, and Wos, Lawrence,
'Set theory in first-order logic: clauses for Godel's axioms', Journal of Automated Reasoning 2
(1986) 287-327

[3] Plaisted, D.A., 'Another extension of Horn clause logic programming to non-Horn clauses', Lecture
Notes 1987

[4] Plaisted, D.A., 'Non-Horn clause logic programming without contrapositives', unpublished
manuscript 1987

[5] Loveland, D.W., Automated Theorem Proving: A Logical Base, North-Holland Publishing Co.,
1978, Chapter 6.

19



[6] Korf, RE., 'Depth-first iterative-deepening: an optimal admissible t search', Artificial Intelligence
27 (1985) 97-109.

20



Appendix A

Code for Routines that Perform Top Level Replacement and General Rewriting

replace-ewrite(X,Y.YN) :
(replacements -> replace(X,XlXNl),

((rewrites,+ f chaining) -> rewrite(XI1,YXN1XN2);
XN2 = XNI , Y = XI);

((rewrites, + Lchaining) -> rewrite(X,YXN2);
(Y = X , copy(YXN2)))),

(Y - XN2 -> YN = Y
(copy(Y,YN),
nurnbervars(YN,Oj_)),!.

replace(XZ,ZN) % X is input, Z output, ZN possible ground instance
copy(X.XN).
(X =XN -> % ground term
replace(XZ,XNZN);
(numbervars(XN,O3-,
replace(X,XNZN))).

replae(XZXN,ZN) :
replacel(XY,XN,YN).,
replace(Y,Z,YNZN),

pprint(replace(X7Z)).

replace(XX,XNXN).

replace 1(L,M,LN,MN) % do one step replacing at top level
(L =-LN -> % like rewritel below

(replace,_ule(L,M), copy(MM))
(copy(LN.LNC),
(LN = LNC -> % ground instance
(clause(replace-ule(LNMN)true,Ref),
clause(replacejrule(L,M),tru,Ref));
(copy"LJC)
numbervars(LC,Oj,
clause(replacej-ule(LC,MN,true.Ref),
clause(replaceju-nle(L,M),rue,Ref))))).

" In rewrite(LMLN,MN, L is input term. M is rewritten term,
" LN is possibly ground instance of L, MN is possibly ground
" instance of M.

rewritel(L,LN,WN) % do one step rewriting at top level
(L =LN -> % ground term

(rewrite-ule(LM), copy(M,MN))
(copy(LN,LNC),
(LN == LNC -> % ground instance
(claus(rewritej-ule(LNM,true,Ref),
cluse(rewritjue(L,M),true,Ref));
(copy(LLC),
numbervars(LC,O,
clause(rewritejule(LCMN,miue,Ref),

21



rewrite-filter(X.X): var(X),!. % can't rewrite a variable

% rewrite-filter(and(XY),and(XY)) :-!. % don't rewrite a conjunction,
% wait and rewrite subgoals separately

rewrite-filter(X.X):
+ top..connective(X),
COPY(XY),
irreducible(Y), L % if irreducible, stop.

rewrite(X,Y,YN)
rewrite_filter(X,Y)4.

rewrite(XY,YN) -- % add thrd argument, numbervars'd
copy(XXN). % term
(X=-XN -> % ground term
rewriteO(X,Y,XN,YN);
(numbervars(XN.Oj,
rewriteO(X.Y,XN,YN))).

rewrite(X,Y,XN,YN):
rewrite-filter(X,Y),!,XN = YN.

rewrite(XY,XN,YN):
rewriteO(X.Y.XN,YN).

rewriteO(X,ZXNZN) :- % do outermost zewriting
rewrite 1(XY,XN,YN),!,
pprintgrewrite(X,Y)),
rewrite(Y,Z,YNZN).

rewriteO(XZ,XNZN)- % reduce subterms, assert
rewriteargs(X,YXN,YN),!, % irreducible if so
(X = Y -> rewrite2(YZ,YN.ZN)

(Y = Z
(top..connective(Y) -> true;

(copy(Y,W), numbervars(WO3,
passert(irreducible(W)))))).

rewrite2(X,Z,XN,ZN): % do one rewrite at top level
rewritel(X,Y,XN,YN),!, % then innermost rewriting
pprint(rewrite(X,Y)),
rewriW(Z,YNZN).

rewrite2(X,X.XN,XN)
(top-.connective(X) -> true;
(Copy(X,W),
numbervars(W,OJ, % assert irreducible term
passert(irreducible(W)))).

22

V ' ~-~ -.
9
P~,~ '~' '% Z-



Appendix B

Code for Tautology Checker

" X is input formula-, after rewrite rules have been applied and
" tautologous clauses have been removed, Y is returned as the
" non-tautologous remainder (if any)
tautology3(X,Y):

pprint(calling(tautology3(X,Y))),
replace-ewrite(X,X 13, % apply rewrite rules to X
asserta(cntiLcnt(O)),
cnJLexpand(X1,X2), % remove tautologous portion of X
retract(cnf..cnt(_j),
descendsort(X2,X3),
remove,-subsumed(X3,X4), % remove subsumed conjuncts
reformulate(X4,Y), % reformulate back to CNIF
taut...prinh(X4). % print non-tautologous remainder

cnf...expand(and(XY),Z) :!
cnf~count(N),
pprint(call(N, cn(.expand(and(X,Y), Z))),
cnf~expand(XZl), % expand each conjunct
cnf~expand(Y,Z2),
append(Zl Z2,Z).
pprint(resul(Ncn..expand(and(X,Y) Z))).

cnfexpand(or(X,Y),Z) :!

cnLcount(N),
pprint(call(N,cnL~expand(or(XY),Z))),
cnf~expand(XZl), % expand each disjunct
cnf~expand(YZ-2),
list~nonjtauts(Z1,Z2,Z), % Z is non-tautologous remainder
pprint(result(N,cnf.expand(or(X,Y), Z))).

cnf-.xpand(X,Z)
cnf~count(N),
z =IXI,
pprint(calnLexpnd(,Z))).

" make a list (Z) of all the non-tautologous clauses that can be formed
" from the two input fists
list~non_zauts([ZlHrLITI,Z2,Z) :-

list~nonjtautsl(ZHZ2L1),
list_nonjauts(Z1TZ2L2),
append(L1,L2,Z).

list_non_tauts(D..jII).

list~non-tautsl(Z1H,[Z2HIZ2TLZ):
make-clause(Z1HZ2H,C),
taut~clause(C), % check if C is a tautologous clause

23



liSt~nnautsl(Z1H,Z2TL2),
Z = L2.

list-jnon-tautsl(Z1H,[Z2HIZ2I,Z):
make -clause(Z1H.Z2,C,
list~nonjtautsl(Z1H,Z2T,L2),
append([C],L2,Z).

list~non_tautslL_,l,]).

% Cis a aut-clausiff Ccontains Yand not(Z) where Y==Z
taut~clause(C)-

append(L, [XIII, C),
negate(X.Y).
memnq(Y,T).

244



Appendix C

Aioms and Rewrite Rules Based on von Neumann.Bernays-Go del Set Theory

7. Standard Rewrites for Logical Connectives

rewrite(if(Xjbhen(Y)), oi(not(X),Y)).
rewrite(not(or(X,Y)),and(not(X).not(Y))).
rewrite(not(and(X,Y)),or(not(X),not(Y))).
rewrite~not(not(X)),X).
rewrite(or(X,and(YZ)),and(or(XY),or(XZ))).
rewrite(or(and(X,Y,and(or(X,Z),or(Y,Z))).
or(X,Y) :-prolog(tautology(or(X,Y))).
or(X,Y):-- X.
or(X,Y) :-- Y.
and(X,Y):-- X,Y.
rewrite(Iland([X]), X).
rewrite(Land([X,YITI). and(XLand([YrrD)).
rewrite(not(Land([X])), not(X)).
rewrite(not(Land(tX,YIT])), or(not(X),not(l-and([Yrf)))).
rewrite(L-or([XI), X).
rewrite(Lor(MXYfl'. or(XLor([YIT]))).
rewrite(not(l-or([X1)). not(X)).
rewrite(not(Lor([X,Yfl)), and(not(X),not(Lor([YMT)))).

N 8. Axioms and Basic Definitions

Axiom A- I little sets are sets (ommitted because all objects are sets)

Axiom A-2 elements of sets are little sets
(Vx V)[X r=y --+M W]J

m(X) :- el(X,Y).

Axom A-3 principle of extensionality
Vx,y)((Vu)[m(s)-9(asEX *-+sey)] -4x=Y]

rewrite(eq(XY), and(sub(X,Y). sub(Y,X))).
rewrite(not(eq(X,Y)), or(not(sub(X,Y)), not(sub(YX)))).
rwrite(noi(meq(XY)),l-or([not(m(X)) ,not(m(Y)),no~eq(X,Y))])).
rewrite(eq(set(X),set(Y)),meq(X,Y)).
rewrite(not(eq(set(X).set()),not(meq(X,Y))).

rwrite(not(eq(set(X),set(YZ))) ,Lor([not(meq(XY)),not(meq(XZ)),not(meq(YZ))])).

rwriten(eq(set(X,Y),set(Z))) teq(set(Z),set (Y))).

rew(eq(setXY)se()),or(and(meq(X,Weq(Y.Z)),and(meq(XZ)mzeq(Y,W)))).
rewrile(not(eq(set(X,Y),set(W,Z))),an(or(not(meq(XW)),not(meq(Y,Z))),

2S



or(not(mfeq(X,Z)),not(meq(Y,W))))).
rwieeq(ord-r(XY),or..pair(W)),and(meq(X,W),meq(Y,Z))).

rewrite(not(eq(ord-pair(XY),ord-pair(WZ))),or(not(meq(X,W)),norqme(y7z))))-

Axiom A-4 existence of nonordered. pair
(Vux V)[u r=[xy) ++ [m(u) A (u=x V u=y)]

rewrite(el(U~set(X,Y)), and(m(U), or(eq(U,X),eq(U,Y)))).

rewrite(not(el(U,set(X,Y))), ar(notqm(U)), and(not(eq(UX)),not(eq(U,Y))))).

Definition of singleton set

eq(set(X), set(XX)).

Definition of ordered pair
(V,y)[I<x~y >=[[x),(x ))]

eq(or&..pair(XY), set(set(X), set(X,Y))).
m(ordpair(XY)).

Definition of opp (ordered pair predicate)

rewrite(opp(X), Land([m(Y), m(Z), eq(X, or&..pair(YZ))])).
rewrite(not(opp(X)), I-or([not(m(t2(X))), not(m(f3(X))),

not(eq(X, ord...pair(f2(X),C3(X))))])).
opp(ord...pair(X,Y)).

Axiom of first
(Vz,x)[z rfirg (x) 4-+ m (z) A (Ej,v)[M (U) Am (V) AX=<u,v > A ze u]

rewrite(first(ord..pair(X,Y)),X).
rewrite(el(fLrst(ord-jparX,Y)),Z),el(X,Z)).
rewrite(not(eI(first(ord.pairX,Y)).Z)) .not(eI(XZ))).
rewrite(el(Z, first(X), Iand([m(Z, m(U), m(V), eq(X ord-.pair(U,V)), el(ZU)])).
rewrite(not(el(Z, first(X))), Lor([not(m(Z)), notqm(f4qZX))), notqm(f5(ZX)),

not~eq(X, ordpair(f4(Z,X),f5(ZX)))), not(el(Zf4(ZX)))])).

A xio m o f seco n d u y t ( ) A m( ) A x < v > A z r= v ](Vz,x)[z r=second (x) ++ m (z) A (tv[- uA-)A=uv>Ael

rewrite(second(ord-pair(X,Y)),Y).
rewrite(eI(second(or&..pair(X,Y)),Z),el(Y,Z)).
rewrite(not(el(second(ord-pair(X,Y)),Z)),not(el(Y,Z))).
rewrite(el(Z, second(X)), I-and([M(Z), m(U), m(V), eq(X. ord-paWrUV)), eI(Z,V)1)).
rewrite(not(eI(Z, second(X))), LIor~not(m(Z)), not(m(f6(ZX)), not(mQf7(ZX))),

notgeq(X. ord..pair(f6(Z.X),t7(ZX)))), not(el(ZJt7(ZX)))])).

26



Axiom B- I estin (element relation)
(Vz)[ze~esan + M(Z) Aopp(z) Afirst(z)Esecond(z)J

rewrite(el(Z, estin), I and([m(Z), opp(Z), el(flrst(Z), second(Z))J)).
rewrite(not(el(Z, estin)), Lor((not(m(Z)), not~opp(Z)), not(el(first(Z), second(Z)))])).

Axiom B-2 intersection
(YzX,y)[ZE (X ry)+-*m (z) A z x A z y]

rewrite(el(Z. join(XY)), and(el(ZX), el(Z,Y))).
rewrite(not(el(Z, join(XY))), or(not(el(ZX)), not(el(ZY)))).

Axiom B-3 complement
(Vz,x)(z 6-x +4 m(z) A z dx

rewrite(eI(Z, comp(X)), and(m(Z), not(el(Z, X)))).
rewrite(not(el(Z, comnp(X))), or(not(m(Z)), el(Z, X))).

Definition of union
(IX ,y )(x UY=-(-x ri-y)]

rewrite(el(Z, union(X,Y)), and(m(Z), or(eIEZX), el(Z,Y)))).
rewrite(not(el(Z, union(XY))), or(not(m(Z)), and(not(el(ZX)), not(el(Z,Y))))).
rewrite(el(Z, union(XY)), or(eI(Z.X). el(Z,Y))).
rewrite(not(el(Z, union(X,Y))), and(not(el(ZX), not(el(Z,Y)))).

Axiom B-4 domain
(V z r)[z edomain (x) ++m (z ) A (=bp )(m (xp )A Opp (j~p) Axp ex A z=first (xp)

rewrite(not(el(Z, domain(X))), L-or(tnotgm(Z)), not(m(f8(Z,X))),not(opp(f8(Z,X))),
not(eI(f8(ZXX)), not(eq(Z. first~f8(ZX))))).

Axiom B-5 cross product
(Vz ,r,y)[zC-xxy .4 m(z) Aopp(z) Afirst(z)rex Asecond(z)rey]

rewrite(eI(ord-.pair(X,Y),prod(WZ)),and(el(X,W)el(YZ))).
rewrite(not(el(ord..pair(x,Y),prod(WZ))),or(not(e(X,W))not(e(Y7Z))))
rewrite(eI(Z,prod(X,y)). Land([mMz, opp(Z), el(flrst(Z),X), el(second(Z),Y)])).
rewrize(not(eJ(Z,prod(X,Y))), Lor([no(m(Z)), not(opp(Z)), not(eI(first(Z),X)),

not(el(second(Z),Y))])).

Axiom B-6 converse
(Vz ,r)[z e converse (x) 4+ m (z) A opp (z) A -<second (z ),firs: (z )>e x I

rewrite(converse(ident),ident).
rewrite(eI(Z,convene(X)), I..and([m(Z), opp(Z), el(ord~puir(second(Z),irs(Z)),X)D)).
rewrite(not(eI(Z,converse(X))), Lor(fnot~m(Z)), notqopp(Z)),

notgel(ord..pair(secnd(Z),firstUZ)),X))])).

27



Axiom B-7 rotazejright(u 
(v (w(VZ,X)[ZE r= otate right(x) ++ m (z) A (~~~fmu mv mw

z =<u,<v,w A <v,<wU >e x

rewrite(el(Z, rotate-ighz(X), Land([mCZ), m(U), m(V). m(W).
eq(Z~ord-pair(U, or&..pairV,))), el(ord-.pair(Vor&..pair(WU)), X)])).

rewrite(not(el(Z, rotate-righi()), Lor(tnot~m(Z)), not(m(f9(ZX))),
notkm(flO(Z.X))), not(m(f I ZX)),

not(eq(Tor-pair(fO(Z,X),ord.4air(fI I(ZX),f 1 (ZX))) ))]

Axiom B-8 flip..range
(Vz~x[z eflprange (X) ++ m (z)A (=-s.v.w)[m (u) A m(v) A m(w) A

z=<u,<v,w > A <u,<w,v >Ex])

rewrite(el(Z-,fipjrAnge(X)), Land([m(Z), m(U), m(V), m(W),
eq(Z, ord-pairU~ord..pair(VW))), el(ord-.pair(Uord...pair(W,V)),X)])).

rewrite(not(el(Z,flip..range(X))), Lor([notqm(Z)), not(m(f12(ZX))), not~m(f13(Z,X))),
not(m(f14(ZX)), not(eq(Z, ord~pair(fl2(ZX),ord...pair(f13(Z,X),f 14(Z,X))))),
not(el(ord-jpair(fl2(ZX,ord..pair(fl4(Z,X),f13(ZX)),X))])).

Definition of successor
(VX)[SUCC (x)=xux

rewrite(succ(X), union(Xset()).

Definition of 0 (empty set)
(Vz )[zdo 0

m(O).
not(el(Z,0)).

Definition of V (universal set)
(Vz)fz eV ++ m (z)]

rewrite(el(Z,universe), m(Z)).
rewrite(not(el(Z,universe)), not(m(Z))).

Axiom C- I infinity
(=-'y)[m (y) A (ey A (VX)[X ey -+ SUCC(X)e y]

m(f 15).
el(OXfl).
el(succ(X). fIS) :- el(X,fl5).

Axiom C-2 sigma (union of elements)
(Vz.r)(Z Guigma (X) +-)M(Z) A (y)[m (y) Ay r: A z Cyji]
(Vu )[m (u) -+ m (sigma (us))]

rewrite(eK(Z, sigma(X)), Land([m(Z), m(Y), el(YX), el(Z,Y)J)).
rewrite(not(el(Z, sigma(X))), Lor([not(m(Z)), not(m(f16(ZX))),

28

F6 111



no~I(fl6(ZX.X)). nxe(Zf16(Z)))J)).
m(signma()- m(U).

Definition of subset
(Vxj)(XX y *.+ (VUlm (s) -+ (U 6X -+ U 6y)]]

rewrite(sub(XY), o(not(el(fl7(XY),X)), el(fl7(X.Y),Y))).
rewrite(not(sub(X,Y)), and(el(U,X), not(eI(UY)))).

replace(sub(X,Y), or(not(el(fl7(X,Y).X)). el(fl7(X,Y),Y))).
replace(not(sub(X.Y)), and(el(UX), not(eI(U,Y)))).

sub(X,Z): sub(X,Y),sub(YZ).

Specialized subset rewrite rules

rewrite(sub(set(X,Set(Y)jmq(X.Y)).
rewrite(not(sub(set(X),set(Y))),not(meq(X,Y))).
rewrite(sub(set(X).set(YZ)),or(meq(X,Y),meq(X,Z))).
rewrite(not(sub(set(X,set(YZ))),and(not(meqXY)),not(meq(X,Z))))
rewe(subset(X ..et(Z )and(meq(X,Z),meq(YZ))).
rewrite(not(sub(set(X.Y),set(Z))),or(not(meq(X,Z)),notmeq(YZ)))).
rewrite(sub(set(XY),set(W,Z)),or(and(meq(X,W),meq(YZ)), and(meq(XZ),meq(YW)))).

or(not(eq(X,Z))hnot(eq(Y,W))))).
rewrite(sub(X,pset(Y)). or(not(el(fl7(X~pset(Y)).X)), el(fl7(X~pset(Y)),psetMY))).
rewrite(not(sub(X,pset(Y))), and(el(UJX), not(sub(UY)))).
rewrite(sub(Xjoin(Y,Z)), and(sub(X,Y),sub(XZ))).
rewnte(not(sub(Xjoin(Y,Z))), or(not(sub(X.Y)),not(sub(XZ)))).
rewrite(sub(prod(X,Y),prod(WZ)),and(sub(X,W),sub(YZ))).
rewrite(not(sub(prod(XY),prod(W.Z))),or(not(sub(X,W)),not(sub(Y,Z)))).

Axiom C-3 power set
(VIZ X)[Z e pset (x) ++ M (Z) A Z gX]
(Vu)[m (u) -+ m (pse (u)]

rewrite(el(Z, pset(X)), sub(Z,X)).
rewrite(not(el(Z. pset(X)), not(sub(ZX))).

m(pset(U)): m(LI).

Definition of relation
(Vz)freladon (z) ++ (vx)m (k) -+.(X EZ -+Opp (X))]]

rewrite(relation(Z), I or([not(cI(fl8(Z).Z)), opp(f18(Z))J)).
rewrite(not(relation(Z)), Land([eI(XZ), not(opp(X))])).

Definition of siflLval (single valued set)
(VX)[Sngval(x) E-(Vu,v.w)[m(u) AM(v) Am (w) -+4(<U,V>EX A <Uw>ex -4 v-w)]]

rewrite(sing-val(X). Lor([not(ei(ord..pai(x),f20(x)).X)),
not(el(ord-pir(f19(X).f21(X)).X)), eq(f20(X),f2l(X))l)).

29



rewnite(not(simgvai(X)). L.and([eI(ord..pair(U.V),XQ, el(ord-puir(UW).X),
not(eq(V,W))J)).

Definition of function
(V4f )V(unction (4 ) +* relation (4) A sing wz (4)]

rewrite(function(XF). and(relation(XF), sing-val(XF))).
rewrite(not(function(XF)), ox(not(rehtion(XF)), not(sing-val(XF)))).
rewrifunction(conveeXF)(and(el(ord-air(g4(XF)g5(XF))xJ),

rewrite(not(functon(coswerse(XF)).or(and(el(XXF),not(opp(X))),
Land([el(ord-pair(X,Y),XF),eI(ord-pair(ZY),XF),not(eq(X,Z))]))).

Axiom C-4 image and substitution
(Vz.x4)[zeimage(x4)44*M(z)A( y)[m(y)Aopp(y)Ayre4 A

first y)C:x A second (y)=z ]]
(Vx4Af)[M (x) A functon (#) -+ M (image (x #))]

rewrite(el(Z, image(XXIF) Land(fm(Z), mmY, opp(Y). eI(Y,XF),
el(first(Y),X eq(second(Y),Z)])).

rewrite(not(el(Z. image(XXF))), Lopr([not(m(Z)), not(m(f22(ZXXF)),
not(opp(f22(ZX,XF))), not(el(f22(Z,XXF),XF)),
no(eI(first(f22(Z,X,XF),X)), not(eq(second(f22(Z,XXF),Z))])).

m(imageMXXF)): m(X), function(XF).

Definition of disjoint
(Vx,y)[disjoint (xy) +-) (vu)fm (u) -+ u dx v u 9y)]]

rewrite(disjoint(X,Y). or(not(el(f23(X,Y),X)), not(el(t23(X.Y),Y)))).
rewrite(not(disjoint(X,Y)). and(el(UX). el(U,Y))).

Definition of set difference
(Vx,y,z)[xEy-z 44xey Axgz]

rewrite(el(X,diff(YZ)), and(el(X,Y).not(el(XZ)))).
rewrite(not(,eI(X,diff(YZ))), ornot(e(XY)),eI(XZ))).

Axiom D regularity
(VX)[XO4 -+ (?as)[m(u) Auex Adijsjont (ux)]]

eI(f24(X),X) :-not(eq(X,O)).
disJoint(f24(X).X) :-not(eq(X,O)).

Axiom E choice
(=5)1fwaction(u) A(V)(m(x) A X*O-+(EtVl((y) Ayex A <xy>eIs]

function(t25).I
el(f26(X),X) :-m(X). notgeq(XO)).
el(ord..pair(X,126X)),t'25) :-m(X), not(eq(XO)).

30.I

..........



9. More Set Theory Defintioms

Definition of range -
(Vz,x)[z erange (x) .m (z) A (=_,)m (Xp) Aopp (xp) A xp 6x A z=second (xp)]]

rewrite(eI(Z,range(X)),...and( [m(Z),m(XP),opp(XP).eI(XP,X).eq(Z.second(XP))])).
rewrite(not(el(Z,range(X))),l..or([not(m(Z)),not(m(f27(ZX)),not(opp(f27(Z.X))).

notqel(f27(ZX,X)),notqeq(Z,seond(f27(Z,X))))])).

Definition of identity relation
(Vz)[ze ident ++ m (z) A Opp (Z) A first (z):=second (z)]

rewrite(not(el(ord-pair(X,Y),ident)),no(eq(X,Y))).
rewrite(el(Zident),Land([oppZ),eq(first(Z),second(Z)))).
rewrite(not(el(Zident)),..or([not(opp(Z)), not(eq(first(Z),second(Z)))]).

Definition of restrict (V is universal set)
(Vix y )[restrict (x y )=x N~y xV)]

rewrite(restrict(X,Y)join(X.prod(Y,universe))).

Definition of one_one (one-to-one function)
(V4f ) [one one (4)f fuction (41) A function (converse(4)

rewrite(one .one(XF),and(function(XF),function(converse(X))).
rewrite(not(oneone(XF)).or(not(function(XF),not(function(converse(XF))))).

Definition of apply
(VZ4',y)(zeapply(4f,y) -*M(z)A(3,,w)(m(w)Aopp(w)Awexf A

firs(w)w=y A z esecond (w)]]

rewrite(eI(Z.applyQX,Y))Land([m(Z).m(W),opp(W),el(WX)M,eq(fist(W),Y).
el(Z,second(W))])).

rewrite(not(el(Z,apply(XF,Y))),l.or((not(m(Z)),not(m(f28(ZXF.Y))),
not~oppQf28(ZXF,Y))). not(el(f28(ZXF,Y),XF)),
not(eq(first(f28(Z.XF,Y)),Y)), not(el(Z,second(f28(ZXF,Y))))])).

Definition of app2
(V4 ,r,y )[app 2(4f ,xy)=apply (4f <xy y>)]

rewrite(app2(XFX,Y)apply(XF~or&..paiX,Y))).

Definition of maps
(Vx y)[maps Q4.x y) ++ function (4) Adomin (xf)=X A range (4i)r.y I

rewrite(maps(XIF,X,Y),1.and([function(XF),eq(domain(XF),X),sub(rang(XF,Y))).
rewrite(not(maps(XFXY)),Lor([not(function(XF)).not(eq(domain(XF)X))

not(sub(range(XF),Y))j)).

31



Definition of closed
(Vs4)[closed (x4) ++m (x) A M(Af) Amaps (xf uxs ~j)]

rewrite(closed(XSXF ),iand(m(xS)jn(XF),maps(XF.prod(XS.XS).XS)))
rewrite(not(closed(XS,XF)),Lor([no(m(XS)),no~m(XF)), not(maps(XF,prod(XSXS),XS))])).

Definition of compaosition
(Vz4f xg)[zExgC4f -+m(z)A(=- y.W)[(mX)AM(y)AM(w)A

z=<X,y>A<X,W>e4f Acwy>eXg]]

reite(el(Z,cmpose(XG,XF))Jand([m(Z)n(X)jn(Y),m(W),eq(Zord-pair(XY)).
el(ord-.pair(X,W),XF),el(ozd-.pair(W,Y),XG)J)).

rewrite(not(el(Z~compose(XG,XF)))Lor(no(m(Z)).not(m(f29(Z,XIFXG))),
not(m(t30(Z,XF,XG))),not(m(f3 1(Z,XF,XG))),
not(eq(Z,ord-air(29(ZXFXG).30(Z.XFXG)))),
not(el(ordpuir29(Z,XF,XG)f3(Z,XF,XG)),X)),
not(el(ord-pir(f3 1(Z,XF,XG),f30(Z,X<F,XG)),XG))])).

Definition of homomorphism
(Vxh .xs 141 ,xs 24 2)[hom (xhxs 141 Ixs 24 2) ++ closed (xs 14 1) A closed (xs 24f2) A

map$ (xh xS ,XS 2) A (Vxy)[(Xex 1.S A y eXS 1)-.+
apply (xh app 2(41 lx ,))=app 2(4 2,apply (xhx ),apply (xh y ))]J

rewrite(hom(XH,XS 1 ,XF1,XS2)XF),Land([closed(XS 1 ,XF),closcd(XS2,XF),
maps(XH,XS 1,X52),ifand(el(f32(XH.XS 1,XFMXS2,XF2),XS 1),
el(f33(XH,XS1 ,XFI ,XS2.X<F2),XS 1)),
thcn(eq(apply(XHiapp2(XF1 .f32(XH,XS I XFI ,XS2,XF2),f33(XH,XS 1 XFl ,XS2,XF2))),
app2(XF2,apply(XHf32(XHXS1,XF1,XS2,XF2)),
apply(XHLI33(XH,XSI1,XF1,XS2,XF2))))))J)).

rewrite(not(hom(XH,XSI1,XFI ,XS2.XI 2)).Lor((not(closed(XSI ,XF1)),
not(closed(XS2,XF2)),
not(maps(XH,XS 1,XS2)),an(and(el(XXS 1),el(Y,XS 1)),
not(eq(apply(XH~app2(XFI ,X,Y)),app2(XCF2,apply(XHX),apply(XH,Y)))))])).

Definition of "equinumerosity"
(V~)X-)+ ?)oeoe(f)Admi x = A range (if)=yJ]1

rewrite(equinum(XY).Land((one-on(XF,eq(domain(XF).X),eq(range(XIF),Y)])).
rewrite(not(equinum(X,Y)),lor([not(oneone(gl(X,Y))), not(eq(doinain(g 1(X,Y)),X)),

not(eq(range(SI(XY)),Y))J)).

Definition of "less than or equal to"
(VX,y)[X <y ++4-(?a[z y A xuzJ1]

rewrite(less...eq(X,Y),and(sub(Z,Y),equinum(X.Z))).
rewrite(notoesseqXY)),or(not(sub(Z,Y))no(equinum(XZ)))). I

32



Appendix D

Test Results Using a Tautology Chetker

Table 1

Iheams
(1 1 false :-ea(unicn(ab)uMio(b~A))

(2 false :- coi (ab)jom(b~A))-

(5 false :-eaunicn(aecmp(s)). -iverse).
(6 false :-eaioin(apoony~s)). 0).
(7) false :- ea(cmyanipiverse).0).
(8). false :-ea(ccmp()mmiverse).

(9 false :- ea(ca~omnP(a)).a).
(10) false :-ea(union(a.0).).

(11) false: cq~OGn(auniverc).A).
(12) false :-dounion(auverse).wiiverse).

(13) false :-eafloi(a.0).0).

(14) 1false :-ea(union(umoo(aO).c).union(awnion(bc))).

(15) 1false :-eqooin~ioin(ab).cjonajoin(bc)))-

(16) 1false :-iftsub(ab). the(ea6oin(ab).a)))
(17) 1false :- eo~comp~union(ab))jon cm )coinp~))
(19) 1false:- eq(canv 'oin(ab)uno~n-p(&).cap(b))).
(19) 1false :-eo(ioin(union(a~b).union(.oMD~)).a)

(2) false :-ea(difF(abhoin(acomPMb)-

(21) 1false :-eg(umio(auniverse)universe).

(2) false :-eoo(aunionftc)). unionfioi(ab). ioi(a.0)).
(2) false: eunionamonbx) c inimion bi),mionac).

(24 fals: fsu a zeaua
(5 false :- f(arsub(ab).n(bajct)).-sbc).

(27 false :- if(disloint(ab).then(co~iosn(ab).0)))-
(28 false :- sub(aunion(ab)).
(2) false:- sub(diff(ab).a).
(30) 1 false :- iffsu~ajimn(bc)). dmenand(aub(ab)AubaAc))).
(31) false :- a(vaaioi(ab)).jo.(pm().Pse(b))).
(3) false :- c(psct(ioi(a~b))hin(psg(sa)c(b))).
(33) 1false :-sub~prod(ajoin(bc)).ioin(pfod(ab).Prod(a~c))).

(3) fals:- if(ud(sub(ab).subcA)).dM(subhproda.C)pmd bd))
(3) false :-f(and(um(ab).fmeq(cAd)).then(co(ord &ir(;Ac).Pair(bAd))))
C36 false :-if(ea(aordujazfbc))jthen(ojpp(a))).

(37) false :-f(and(m(a)jn)).th.(sub(sta).st(ab))))

(38) false:- if(and(m(a),m(b)). then(eq(sft(ab)AeOAb~)))).

Note that theorems (31) and (32) are the same. However, (31) was proven using a rewrite rule for the sub-
set axiom, while (32) was proven using a replace rule for the subset axiom. Using a replace rather than a
rewrite rule prevented terms containing the "subset" predicate from being rewritten before tautology check-
ing was performed. This allowed the prover to find the proof much faster in the case of this particular
theorem.

33

- - - - - - - - - -



Table 2

Summary of ResUlts
With "or-over-und" Without "or-over-and"
Distribution Rules Distrion Rules

Theotn Time Inferences Tune Inferences
(i) 11 3.23 0 2.5 0
(2) 1 4.18 0 4.14 0
) 1.66 0 1.61 0

(4) 1.68 0 1.76 0
(5) 5.93 4 5.31 4
(6) 5.96 6 5.85 6
M7) 3.66 4 3.5 4
(8) 2.7 2 2.68 2
(9) L 5.73 4 4.86 4

(10) 2.91 2 2.53 2
(11) 4.53 4 4.46 4
(12) 4.73 4 4.33 4
(13) 2.76 2 2.73 2
(14) 9.68 0 .5.51 0
(1J 1 10.88 0 10.38 0
(16) 7.48 4 4.91 4
(17) 10.36 0 6.64 0
1) 118.1 0 5.94 0
(19) 9.34 0 5.33 0
(20) 1 10.11 5 8.73 5
al) 4.66 4 4.53 4
(22) 20.55 0 3.44 0
(23) 19.33 0 7.73 0
(24 11.26 2 1.13 2
(25) 12.26 8 9.63 8
26) 1 3.76 4 3.21 4
(27) 18.36 14 15.35 14
(28) 0.81 0 0.78 0
(29) 0.73 0 0.34 0
0) 40.76 16 24.04 16
(1) 217.96 32 139.33 32
(32) 4.33 0 4.28 0
(33) 3.38 0 3.11 0
(34) 63.55 32 34.63 16
C35) 15.96 0 4.93 0
C36) 69.11 23 37.78 16
37) 67.21 0 4.25 0

(38) 109.00 0 8.84 0

These results were derived by using a tautology-checker in conjunction with rewrite/replace rules.

SUMMARY: In each case, the number of inferences required is virtually the same whether or not the "or-
over-and" distribution rules are used. However, in almost every instance there is a speed-up when these
rules are not used. Furthermore, as a general rule it seems that as the amount of time required to prove the
theorem increases, the greater the speed-up when the "or-over-and" rules are not used.

34

-.2!



l.El

..Ns
1,

t',, "f "-


